Erowid References Database
Reneman L, Majoie CB, Flick H, den Heeten GJ.
“Reduced N-acetylaspartate levels in the frontal cortex of 3,4- methylenedioxymethamphetamine (Ecstasy) users: preliminary results”.
AJNR Am J Neuroradiol. 2002;23(2):231-237..
|
Abstract
BACKGROUND AND
PURPOSE: The perceived safety of the recreational drug methylenedioxymethamphetamine (MDMA), or Ecstasy, conflicts with animal evidence indicating that MDMA damages cortical serotonin (5-HT) neurons at doses similar to those used by humans. Few data are available about the effects of MDMA on the human brain. This study was designed to evaluate MDMA-related alterations in metabolite ratios with single- voxel proton ((1)H) MR spectroscopy.
METHODS: Fifteen male MDMA users (mean lifetime exposure, 723 tablets; mean time since last tablet, 12.0 weeks) and 12 age-matched control subjects underwent single-voxel (1)H MR spectroscopy. N-Acetylaspartate (NAA)/creatine (Cr), NAA/Choline (Cho), and myoinositol (MI)/Cr ratios were measured in midfrontal gray matter, midoccipital gray matter, and right parietal white matter. Data were analyzed with linear model-based multivariate analysis of variance.
RESULTS: NAA/Cr (P =.04) and NAA/Cho (P =.03) ratios, markers associated with neuronal loss or dysfunction, were reduced in the frontal cortex of MDMA users. Neither NAA/Cr (P =.72) nor NAA/Cho (P =.12) ratios were different between both groups in occipital gray matter and parietal white matter (P =.18). Extent of previous MDMA use and frontal cortical NAA/Cr (rho = -.50, P =.012) or NAA/Cho (rho = - .550, P <.01) ratios were significantly associated. CONCLUSION: Reduced NAA/Cr and NAA/Cho ratios at (1)H MR spectroscopy provide evidence for neuronal abnormality in the frontal cortex of MDMA users; these are correlated with the degree of MDMA exposure. These data suggest that MDMA may be a neurotoxin in humans, as it is in animals.
|
# |
Submit Comment |
|
[
Cite HTML ]