Erowid References Database
Jayanthi S, Ladenheim B, Andrews AM, Cadet JL.
“Overexpression of human copper/zinc superoxide dismutase in transgenic mice attenuates oxidative stress caused by methylenedioxymethamphetamine (Ecstasy)”.
Neuroscience. 1999;91(4):1379-87.
|
Abstract
Administration of 3,4-methylenedioxymethamphetamine (4 x 20 mg/kg) to non-transgenic CD-1 mice caused marked depletion in dopamine, 3,4-dihydroxyphenylacetic acid and 5-hydroxytryptamine in the caudate-putamen. There were no significant changes in serotonergic markers in the hippocampus and frontal cortex. Homozygous and heterozygous copper/zinc superoxide dismutase transgenic mice show partial protection against the toxic effects of 3,4-methylenedioxymethamphetamine on striatal dopaminergic markers. In addition, 3,4-methylenedioxymethamphetamine injections caused marked decreases in copper/zinc superoxide dismutase activity in the frontal cortex, caudate-putamen and hippocampus of wild-type mice. Moreover, there were concomitant 3,4-methylenedioxymethamphetamine-induced decreases in catalase activity in the caudate-putamen and hippocampus, decreases in glutathione peroxidase activity in the frontal cortex as well as increases in lipid peroxidation in the frontal cortex, caudate-putamen, and hippocampus of wild-type mice. In contrast, administration of 3,4-methylenedioxymethamphetamine to homozygous superoxide dismutase transgenic mice caused no significant changes in antioxidant enzyme activities nor in lipid peroxidation. These results provide further substantiation of a role for oxygen-based radicals in 3,4-methylenedioxymethamphetamine-induced neurotoxicity. The present data also suggest that free radicals generated during 3,4-methylenedioxymethamphetamine administration may perturb antioxidant enzymes. Consequently, there might be further overproduction of free radicals with associated peroxidative damage to cell membranes and associated terminal degeneration.
|
# |
Submit Comment |
|
[
Cite HTML ]