Erowid
 
 
Plants - Drugs Mind - Spirit Freedom - Law Arts - Culture Library  
Erowid References Database
Orio L, O'Shea E, Sanchez V, Pradillo JM, Escobedo I, Camarero J, Moro MA, Green AR, Colado MI. 
“3,4-Methylenedioxymethamphetamine increases interleukin-1beta levels and activates microglia in rat brain: studies on the relationship with acute hyperthermia and 5-HT depletion”. 
J Neurochem. 2004 Jun;89(6):1445-53.
Abstract
3,4-Methylenedioxymethamphetamine (MDMA) administration to rats produces acute hyperthermia and 5-HT release. Interleukin-1beta (IL-1beta) is a pro-inflammatory pyrogen produced by activated microglia in the brain. We examined the effect of a neurotoxic dose of MDMA on IL-1beta concentration and glial activation and their relationship with acute hyperthermia and 5-HT depletion. MDMA, given to rats housed at 22 degrees C, increased IL-1beta levels in hypothalamus and cortex from 1 to 6 h and [(3)H]-(1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)3-isoquinolinecarboxamide) binding between 3 and 48 h. Increased immunoreactivity to OX-42 was also detected. Rats became hyperthermic immediately after MDMA and up to at least 12 h later. The IL-1 receptor antagonist did not modify MDMA-induced hyperthermia indicating that IL-1beta release is a consequence, not the cause, of the rise in body temperature. When MDMA was given to rats housed at 4 degrees C, hyperthermia was abolished and the IL-1beta increase significantly reduced. The MDMA-induced acute 5-HT depletion was prevented by fluoxetine coadministration but the IL-1beta increase and hyperthermia were unaffected. Therefore, the rise in IL-1beta is not related to the acute 5-HT release but is linked to the hyperthermia. Contrary to IL-1beta levels, microglial activation is not significantly modified when hyperthermia is prevented, suggesting that it might be a process not dependent on the hyperthermic response induced by MDMA.
Comments and Responses to this Article
#
Submit Comment
[ Cite HTML ]