Erowid References Database
Cole MD.
“The Analysis of LSD”.
The Analysis of Controlled Substances. 2003.
|
Abstract
While a large number of drugs are known which are of plant origin, or have plant products as starting materials for the synthesis of the drugs, there are, equally, a number of drugs of fungal origin. Of these, perhaps lysergic acid diethylamide (LSD) (1) is the most ‘famous’, i.e. well known, and it is on this drug that this chapter focuses. Interestingly, the drug is an indole alkaloid which presents special difficulties and opportunities in terms of drugs analysis.
Lysergic acid diethylamide (LSD) is one of the most potent hallucinogens known to man. It was first synthesized in 1938 and was discovered to be psychoactive in 1943. It was initially used, experimentally, in the treatment of mental disorders but has not been used in this way for some 30 years. LSD encountered in the illicit drugs market of today is produced in clandestine laboratories. These are rarely detected because they make a large quantity of LSD, which lasts for an extremely long period of time, since only very small doses are administered and subsequent syntheses are not required [1]. LSD is, in the main, prepared from lysergic acid, via a series of complex reactions which require careful monitoring and control. The forensic scientist will see the resulting drug in a number of differing dosage forms. The materials may be added to inert substrates or to sugar cubes, or mixed with molten gelatin which is then cooled and cut into small pieces containing the appropriate dose. These latter are known as ‘window panes’. However, these dose forms suffer from great inhomogeneity and the vast majority of LSD observed in the forensic science laboratory today is encountered in the form of ‘blotter acid’. In this form, an absorbant paper is dipped into a solution of LSD, and then dried. Such a procedure allows an even distribution of the drug through the paper. A typical blotter acid dose contains between 30 and 150 μg of LSD per dose. Blotter papers are frequently decorated, with some examples being shown on Plates 3.1 and 3.2, and represent the dose form on which our discussion will centre.
|
# |
Submit Comment |
|
[
Cite HTML ]